CHAPTER-7 POTENTIOMETERS

Two Mark Questions

10. Ans: (b) Sol: Measurement of reactance of a coil by using Polar type ac potentiometer Given that I = $12\angle 13.8^{\circ}$, V = $27.8\angle 29.7^{\circ}$ $Z = \frac{V}{I}\angle \theta_{C} - \theta_{S}$ Reactance X = $Zsin(\theta_{C} - \theta_{S})$, Where $\theta_{C} = 29.7^{\circ}$, $\theta_{S} = 13.8^{\circ}$ $Z = \frac{27.8}{12}\angle 29.7 - 13.8$ $Z = 2.31\angle 15.9\Omega$ Reactance X = 2.31sin(29.7 - 13.8) $X = 0.632\Omega$

- 11. Ans: (b)
- Sol: The voltage read by potentiometer is 1.2V The voltmeter reads 0.6V with 20,000 Ω /V on 5V range Input resistance $R_V = S_{DC} \times \text{voltage}$ $R_V = 20,000 \times 5$ $R_V = 1,00,000\Omega$
- 12. Ans: (a)

Sol: Given that Working current $I_w = 10mA$ Dial resistor having 15 steps of 10Ω each i.e. = 150Ω slide wire resistance is = 10Ω Total resistance = $150 + 10 = 160\Omega$ Range of voltage = $I_W \times R_{total}$ $= 10 \times 10^{-3} \times 160 = 1.6V$ Resolution: slide wire provide with 100 divisions and since the total resistance of slide wire (10Ω) corresponding to a voltage drop of ($10mA \times 10\Omega = 0.1V$), each division of rlide wire correspondents = 0.1

slide wire corresponds to $=\frac{0.1}{100}=0.001$ With certainly the reading upto $\frac{1}{5}$ of scale division Then resolution is $\frac{1}{5} \times 0.001 = 0.2$ mV 13. Ans: (a)

Sol: For the voltage division $\left(\frac{V_0}{V_{in}}\right)$ is independent of frequency, the impedance ratio should also be independent of frequency

$$\frac{Z_1}{Z_2} = \frac{R_1 \frac{1}{j\omega c_1}}{R_1 + \frac{1}{j\omega C_1}} \times \frac{R_2 + \frac{1}{j\omega c_2}}{R_2 \times \frac{1}{j\omega c_2}}$$
$$= \frac{R_1}{1 + j\omega c_1 R_1} \times \frac{1 + j\omega c_2 R_2}{R_2}$$
$$= \frac{R_1}{R_2} \cdot \frac{1 + j\omega c_2 R_2}{1 + j\omega c_1 R_1} \Longrightarrow C_2 R_2 = C_1 R_1$$
$$C_1 = \frac{C_1 R_1}{R_2} = \frac{1 \times 10^{-6} \times 10}{1 \times 10^3} = 10 \mu F$$

15. Ans: (a) **Sol:** Given that,

Sol:
Resistance of unknown resistor
$$R = \frac{V_R}{V_S}S = \frac{0.4221}{1.0235} \times 0.1 = 0.041208\Omega$$

Current through the resistor $= \frac{V_S}{S} = \frac{1.0235}{0.1} = 10.235A$
Power loss in unknown resistance $= I^2R = (10.235)^2 \times 0.041208 = 4.316W$

17. Ans: (b)

Sol: Voltage drop per unit length
$$=\frac{1.45}{50} = 0.029$$
 V/cm
Voltage drop across 75 cm length $= 0.029 \times 75 = 2.175$ V
Current through resistor $=\frac{2.175}{0.1} = 21.75$ A

200cm

400Ω

PREVIOUS IES QUESTIONS

03.	Ans:	(c)
-----	------	-----

Sol:	Voltage drop per unit length	$=\frac{1.45}{50} = 0.029$ V/cm
	Voltage drop across 70 cm leng	$th = 0.029 \times 70 = 2.03V$
	.:. Current through resistor	$=\frac{2.03}{1}=2.03$ A

PREVIOUS GATE QUESTIONS

One Mark Questions:

02. (GAT	'E-EE-1994)
Sol:	Standard cell $e.m.f = 1.18V$
	And balanced at 600 mm
	:. Working current Iw = $\frac{1.18V}{600 \times 10^{-3}} = 1.967 \times 10^{-3} \text{ A}$
	Test cell balanced at 680 mm
	$680 \times \text{Iw} = \text{test cell voltage (V)}$
	\therefore V = 680 × 1.96 × 10 ⁻³ =1.34 V

Two Marks Questions

06. GATE - IN - 1996

Ans: (a) **Sol:** Under balanced condition

$$I_{W} = \frac{E}{R_{h} + R_{slide}}$$
$$= \frac{3.2}{200 + 200 + 2800} = 1 \times 10^{-3} A$$

Then,

$$E_x = I_{\omega} \times 200 = 2 \times 10^{-3} \times 200 = 200 \text{mV}$$

07. GATE ,IN- 2003

$$-[0.2 \times 10^{-3} \text{ R} - 1] = [3.8 \times 10^{-3} \times \text{ R} - 1]$$
$$R = \frac{2}{4 \times 10^{-3}} = 500\Omega$$
From (2)
$$V_x = 3.8 \times 10^{-3} \times 500 - 1$$
$$V_x = 0.9 \text{ V}$$

08. GATE - IN - 2004

Ans:(a) **Sol:** from

from the circuit $V = -\frac{R_f}{R} \times V_i = -\frac{15 \times 10^3}{10 \times 10^3} \times 1V = -1.5V$

09.GATE - IN - 2004

Ans(a) Sol:

$$\begin{split} E_x \text{ balances at 10 m 18cm} \\ \text{ i.e } 10.18\text{ m} &= 10.18\Omega \\ E_x &= I_w \times \text{ resistance of slid wire at balance} \\ I_w &= \frac{1.018}{10.18} = 0.1\text{ A} \\ I_w &= \frac{E}{R_{sc} + 11} \\ R_{se} &= \frac{10.18}{10.18} \\ R_{se} &= 10.18 \\ R_{se} &= 10.18$$

10. GATE - IN - 2006

Ans:(c)

Sol:

Voltage across 1000 Ω resistance on slide wire by Using voltage division = $1.6 \times \frac{1000}{1000 + 500 + 100} = 1$ V Apply KVL $E_v = IgR_s + 1$ V $E_V = 10 \times 10^{-6} \times 100 + 1$

$$Ev = 1.001V$$